Evaluating the potential for prezygotic isolation and hybridization between landlocked and anadromous alewife (Alosa pseudoharengus) following secondary contact.
Katherine A LittrellDavid EllisStephen R GephardAndrew D MacDonaldEric P PalkovacsKatherine ScrantonDavid M PostPublished in: Evolutionary applications (2018)
The recent increase in river restoration projects is altering habitat connectivity for many aquatic species, increasing the chance that previously isolated populations will come into secondary contact. Anadromous and landlocked alewife (Alosa pseudoharengus) are currently undergoing secondary contact as a result of a fishway installation at Rogers Lake in Old Lyme, Connecticut. To determine the degree of prezygotic isolation and potential for hybridization between alewife life history forms, we constructed spawning time distributions for two anadromous and three landlocked alewife populations using otolith-derived age estimates. In addition, we analyzed long-term data from anadromous alewife migratory spawning runs to look for trends in arrival date and spawning time. Our results indicated that anadromous alewife spawned earlier and over a shorter duration than landlocked alewife, but 3%-13% of landlocked alewife spawning overlapped with the anadromous alewife spawning period. The degree of spawning time overlap was primarily driven by annual and population-level variation in the timing of spawning by landlocked alewife, whereas the timing and duration of spawning for anadromous alewife were found to be relatively invariant among years in our study system. For alewife and many other anadromous fish species, the increase in fish passage river restoration projects in the coming decades will re-establish habitat connectivity and may bring isolated populations into contact. Hybridization between life history forms may occur when prezygotic isolating mechanisms are minimal, leading to potentially rapid ecological and evolutionary changes in restored habitats.