Dynamic dielectric function and phonon self-energy from electrons strongly correlated with acoustic phonons in 2D Dirac crystals.
Sina KazemianGiovanni FanchiniPublished in: Journal of physics. Condensed matter : an Institute of Physics journal (2023)
The unique structure of two-dimensional (2D) Dirac crystals, with electronic bands linear in the proximity of the Brillouin-zone boundary and the Fermi energy, creates anomalous situations where small Fermi-energy perturbations critically affect the electron-related lattice properties of the system. The Fermi-surface nesting (FSN) conditions determining such effects via electron-phonon interaction require accurate estimates of the crystal's response function(χ)as a function of the phonon wavevector q for any values of temperature, as well as realistic hypotheses on the nature of the phonons involved. Numerous analytical estimates ofχ(q)for 2D Dirac crystals beyond the Thomas-Fermi approximation have been so far carried out only in terms of dielectric response functionχ(q,ω), for photon and optical-phonon perturbations, due to relative ease of incorporating a q -independent oscillation frequency(ω)in calculation. Models accounting for Dirac-electron interaction with acoustic phonons, for which ω is linear to q and is therefore dispersive, are essential to understand many critical crystal properties, including electrical and thermal transport. The lack of such models has often led to the assumption that the dielectric response functionχ(q)in these systems can be understood from free-electron behavior. Here, we show that, different from free-electron systems,χ(q)calculated for acoustic phonons in 2D Dirac crystals using the Lindhard model, exhibits a cuspidal point at the FSN condition. Strong variability of∂χ∂qpersists also at finite temperatures, whileχ(q)tend to infinity in the dynamic case where the speed of sound is small, albeit non negligible, over the Dirac-electron Fermi velocity. The implications of our findings for electron-acoustic phonon interaction and transport properties such as the phonon line width derived from the phonon self-energy will also be discussed.