Login / Signup

Efficient Modeling of Water Adsorption in MOFs Using Interpolated Transition Matrix Monte Carlo.

Bartosz MazurLucyna FirlejBogdan Kuchta
Published in: ACS applied materials & interfaces (2024)
With the specter of accelerating climate change, securing access to potable water has become a critical global challenge. Atmospheric water harvesting (AWH) through metal-organic frameworks (MOFs) emerges as one of the promising solutions. The standard numerical methods applied for rapid and efficient screening for optimal sorbents face significant limitations in the case of water adsorption (slow convergence and inability to overcome high energy barriers). To address these challenges, we employed grand canonical transition matrix Monte Carlo (GC-TMMC) methodology and proposed an efficient interpolation scheme that significantly reduces the number of required simulations while maintaining accuracy of the results. Through the example of water adsorption in three MOFs: MOF-303, MOF-LA2-1, and NU-1000, we show that the extrapolation of the free energy landscape allows for prediction of the adsorption properties over a continuous range of pressure and temperature. This innovative and versatile method provides rich thermodynamic information, enabling rapid, large-scale computational screening of sorbents for adsorption, applicable for a variety of sorbents and gases. As the presented methodology holds strong applicative potential, we provide alongside this paper a modified version of the RASPA2 code with a ghost swap move implementation and a Python library designed to minimize the user's input for analyzing data derived from the TMMC simulations.
Keyphrases
  • monte carlo
  • metal organic framework
  • aqueous solution
  • climate change
  • healthcare
  • primary care
  • machine learning
  • solid phase extraction
  • electronic health record
  • data analysis
  • psychometric properties