Login / Signup

Angle-resolved photoemission spectroscopy from first-principles quantum Monte Carlo.

Matteo BarboriniSandro SorellaMassimo RontaniStefano Corni
Published in: The Journal of chemical physics (2018)
Angle-resolved photoemission spectroscopy allows one to visualize in momentum space the probability weight maps of electrons subtracted from molecules deposited on a substrate. The interpretation of these maps usually relies on the plane wave approximation through the Fourier transform of single particle orbitals obtained from density functional theory. Here we propose a first-principle many-body approach based on quantum Monte Carlo (QMC) to directly calculate the quasi-particle wave functions (also known as Dyson orbitals) of molecules in momentum space. The comparison between these correlated QMC images and their single particle counterpart highlights features that arise from many-body effects. We test the QMC approach on the linear C2H2, CO2, and N2 molecules, for which only small amplitude remodulations are visible. Then, we consider the case of the pentacene molecule, focusing on the relationship between the momentum space features and the real space quasi-particle orbital. Eventually, we verify the correlation effects present in the metal CuCl 4 2 - planar complex.
Keyphrases
  • monte carlo
  • density functional theory
  • molecular dynamics
  • high resolution
  • solid state
  • deep learning
  • body mass index
  • weight loss
  • mass spectrometry
  • quantum dots