Login / Signup

Reactivity of Undissociated Molecular Nitric Acid at the Air-Water Interface.

Josep M AngladaMarilia T C Martins-CostaJoseph S FranciscoManuel F Ruiz-Lopez
Published in: Journal of the American Chemical Society (2020)
Recent experiments and theoretical calculations have shown that HNO3 may exist in molecular form in aqueous environments, where in principle one would expect this strong acid to be completely dissociated. Much effort has been devoted to understanding this fact, which has huge environmental relevance since nitric acid is a component of acid rain and also contributes to renoxification processes in the atmosphere. Although the importance of heterogeneous processes such as oxidation and photolysis have been evidenced by experiments, most theoretical studies on hydrated molecular HNO3 have focused on the acid dissociation mechanism. In the present work, we carry out calculations at various levels of theory to obtain insight into the properties of molecular nitric acid at the surface of liquid water (the air-water interface). Through multi-nanosecond combined quantum-classical molecular dynamics simulations, we analyze the interface affinity of nitric acid and provide an order of magnitude for its lifetime with regard to acid dissociation, which is close to the value deduced using thermodynamic data in the literature (∼0.3 ns). Moreover, we study the electronic absorption spectrum and calculate the rate constant for the photolytic process HNO3 + hν → NO2 + OH, leading to 2 × 10-6 s-1, about twice the value in the gas phase. Finally, we describe the reaction HNO3 + OH → NO3 + H2O using a cluster model containing 21 water molecules with the help of high-level ab initio calculations. A large number of reaction paths are explored, and our study leads to the conclusion that the most favorable mechanism involves the formation of a pre-reactive complex (HNO3)(OH) from which product are obtained through a coupled proton-electron transfer mechanism that has a free-energy barrier of 6.65 kcal·mol-1. Kinetic calculations predict a rate constant increase by ∼4 orders of magnitude relative to the gas phase, and we conclude that at the air-water interface, a lower limit for the rate constant is k = 1.2 × 10-9 cm3·molecule-1·s-1. The atmospheric significance of all these results is discussed.
Keyphrases
  • molecular dynamics simulations
  • electron transfer
  • density functional theory
  • systematic review
  • deep learning
  • big data
  • mass spectrometry
  • electronic health record
  • quantum dots
  • human health