Login / Signup

The Mechanical and Physical Properties of 3D-Printed Materials Composed of ABS-ZnO Nanocomposites and ABS-ZnO Microcomposites.

Nectarios VidakisMarkos PetousisAthena ManiadiEmmanuel KoudoumasGeorgios KenanakisCosmin RomanitanOana TutunaruMirela SucheaJohn D Kechagias
Published in: Micromachines (2020)
In order to expand the mechanical and physical capabilities of 3D-printed structures fabricated via commercially available 3D printers, nanocomposite and microcomposite filaments were produced via melt extrusion, 3D-printed and evaluated. The scope of this work is to fabricate physically and mechanically improved nanocomposites or microcomposites for direct commercial or industrial implementation while enriching the existing literature with the methodology applied. Zinc Oxide nanoparticles (ZnO nano) and Zinc Oxide micro-sized particles (ZnO micro) were dispersed, in various concentrations, in Acrylonitrile Butadiene Styrene (ABS) matrices and printable filament of ~1.75mm was extruded. The composite filaments were employed in a commercial 3D printer for tensile and flexion specimens' production, according to international standards. Results showed a 14% increase in the tensile strength at 5% wt. concentration in both nanocomposite and microcomposite materials, when compared to pure ABS specimens. Furthermore, a 15.3% increase in the flexural strength was found in 0.5% wt. for ABS/ZnO nano, while an increase of 17% was found on 5% wt. ABS/ZnO micro. Comparing the two composites, it was found that the ABS/ZnO microcomposite structures had higher overall mechanical strength over ABS/ZnO nanostructures.
Keyphrases