Origin of Catalysis by Nitroalkane Oxidase.
Dan Thomas MajorPrashant Kumar GuptaJiali GaoPublished in: The journal of physical chemistry. B (2022)
The rate of proton abstraction of the carbon acid nitroethane by Asp402 is accelerated by a factor of 10 8 in the enzyme nitroalkane oxidase (NAO) relative to that by the organic base acetate ion in water. The Cα proton of nitroalkanes is known to exhibit an abnormal correlation between its acidity strength and the rate of deprotonation, with an unusually slow rate of deprotonation in water. This work examines the origin of NAO catalysis, revealing that the rate enhancement by the enzyme is due to transition-state stabilization, restoring the normal behavior of the linear free energy relationship of Bronsted acids. Interestingly, NAO employs the ubiquitous cofactor flavin adenosine diphosphate (FAD) to perform the subsequent oxidation. Does the FAD cofactor also affect the catalytic rate of the initial proton transfer process of the overall nitroalkane oxidation? Classical molecular dynamics and path-integral simulations using a reaction-specific combined quantum mechanics/molecular mechanics (QM/MM) approach were carried out to obtain the free energy reaction profiles, or the potentials of mean force, for the enzymatic reaction and for a model reaction in aqueous solution, as well as for the 2'-deoxy-FAD co-factor-modified NAO. Free energy perturbation calculations suggest that transition-state stabilization of the reactive fragment is the primary cause of the catalytic effect. It is found that the FAD cofactor plays a crucial role in increasing the Cα proton acidity, via specific hydrogen bonding and π-stacking interactions, although these factors have a smaller effect on the enhancement of the rate of deprotonation. Model QM calculations of the π-stacking complexes between the FAD isoalloxazine ring and the neutral and anionic nitroethane, respectively, reveal that the anionic π-stacking complex is more stable than the neutral one by 15.7 kcal/mol, and a net π-stacking energy of 17.3 kcal/mol is obtained. Hence, the isoalloxazine ring, in addition to serving as a very potent oxidizing agent via the formation of covalent intermediate structures, is able to exert a considerable amount of catalytic effect through noncovalent π-stacking interactions.