Login / Signup

NADP/H binding nearly doubles the stability of a Mycobacterium drug target: an unfolding study.

Saif KhanMahvish KhanMohtashim LohaniSaheem AhmadSubuhi SherwaniSundeep BhagwathMohd Wajid A KhanMohd WahidFarrukh AqilShafiul Haque
Published in: Journal of biomolecular structure & dynamics (2022)
Mycobacterium Aspartate beta semialdehyde dehydrogenase (ASADH) was studied using various spectroscopic techniques and size exclusion chromatography to examine the unfolding of free (apo) and NADP/H-bound (holo) forms of ASADH. Non-cooperative guanidinium chloride (GdnHCl)-induced unfolding of the apo ASADH was discovered, and no partially folded intermediate structures were stabilized. On the other hand, it was observed that GdnHCl's unfolding of holoenzyme was a cooperative process without any stable intermediate structure. The native form of holoenzyme is found to be stable against the lower concentration of GdnHCl only (namely up to 1.25 M GdnHCl). The tryptophan environment appears to unfold cooperatively in case of the holoenzyme and is in well coordination with the overall unfolding of the holoenzyme. The presence of NADP/H shows a stabilizing effect on the tryptophan environment as well as on the native NADP/H-bound enzyme. Δ G Solvent o values reveal nearly two-fold (∼1.9) conformationally more stable folded holoenzyme compared to its native apo state. The C m for the apo and holo forms of ASADH are 1.3 and 1.9 M, respectively. Novel drug leads targeting the NADP/H binding domain of ASADH could offer promising drugs against extremely infective Mycobacterium tuberculosis. Communicated by Ramaswamy H. Sarma.
Keyphrases