Login / Signup

Simplified Perovskite Solar Cell with 4.1% Efficiency Employing Inorganic CsPbBr3 as Light Absorber.

Jialong DuanYuanyuan ZhaoBenlin HeQunwei Tang
Published in: Small (Weinheim an der Bergstrasse, Germany) (2018)
Perovskite solar cells with cost-effectiveness, high power conversion efficiency, and improved stability are promising solutions to the energy crisis and environmental pollution. However, a wide-bandgap inorganic-semiconductor electron-transporting layer such as TiO2 can harvest ultraviolet light to photodegrade perovskite halides, and the high cost of a state-of-the-art hole-transporting layer is an economic burden for commercialization. Here, the building of a simplified cesium lead bromide (CsPbBr3 ) perovskite solar cell with fluorine-doped tin oxide (FTO)/CsPbBr3 /carbon architecture by a multistep solution-processed deposition technology is demonstrated, achieving an efficiency as high as 4.1% and improved stability upon interfacial modification by graphene quantum dots and CsPbBrI2 quantum dots. This work provides new opportunities of building next-generation solar cells with significantly simplified processes and reduced production costs.
Keyphrases