Login / Signup

Can variation among hypoxic environments explain why different fish species use different hypoxic survival strategies?

Milica MandicMatthew D Regan
Published in: The Journal of experimental biology (2018)
In aquatic environments, hypoxia is a multi-dimensional stressor that can vary in O2 level (partial pressure of O2 in water, PwO2 ), rate of induction and duration. Natural hypoxic environments can therefore be very different from one another. For the many fish species that have evolved to cope with these different hypoxic environments, survival requires adjusting energy supply and demand pathways to maintain energy balance. The literature describes innumerable ways that fishes combine aerobic metabolism, anaerobic metabolism and metabolic rate depression (MRD) to accomplish this, but it is unknown whether the evolutionary paths leading to these different strategies are determined primarily by species' phylogenetic histories, genetic constraint or their native hypoxic environments. We explored this idea by devising a four-quadrant matrix that bins different aquatic hypoxic environments according to their duration and PwO2  characteristics. We then systematically mined the literature for well-studied species native to environments within each quadrant, and, for each of 10 case studies, described the species' total hypoxic response (THR), defined as its hypoxia-induced combination of sustained aerobic metabolism, enhanced anaerobic metabolism and MRD, encompassing also the mechanisms underlying these metabolic modes. Our analysis revealed that fishes use a wide range of THRs, but that distantly related species from environments within the same matrix quadrant have converged on similar THRs. For example, environments of moderately hypoxic PwO2  favoured predominantly aerobic THRs, whereas environments of severely hypoxic PwO2  favoured MRD. Capacity for aerial emergence as well as predation pressure (aquatic and aerial) also contributed to these responses, in addition to other biotic and abiotic factors. Generally, it appears that the particular type of hypoxia experienced by a fish plays a major role in shaping its particular THR.
Keyphrases
  • systematic review
  • risk assessment
  • microbial community
  • wastewater treatment
  • high intensity
  • genome wide
  • single cell
  • depressive symptoms
  • abdominal pain
  • heavy metals
  • free survival