Virus-prokaryote infection pairs associated with prokaryotic production in a freshwater lake.
Shang ShenKento TominagaKenji TsuchiyaTomonari MatsudaTakashi YoshidaYoshihisa ShimizuPublished in: mSystems (2024)
Viruses infect and kill prokaryotic populations in a density- or frequency-dependent manner and affect carbon cycling. However, the effects of the stratification transition, including the stratified and de-stratified periods, on the changes in prokaryotic and viral communities and their interactions remain unclear. We conducted a monthly survey of the surface and deep layers of a large and deep freshwater lake (Lake Biwa, Japan) for a year and analyzed the prokaryotic production and prokaryotic and viral community composition. Our analysis revealed that, in the surface layer, 19 prokaryotic species, accounting for approximately 40% of the total prokaryotic abundance, could potentially contribute to the majority of prokaryotic production, which is the highest during the summer and is suppressed by viruses. This suggests that a small fraction of prokaryotes and phages were the key infection pairs during the peak period of prokaryotic activity in the freshwater lake. We also found that approximately 50% of the dominant prokaryotic and viral species in the deep layer were present throughout the study period. This suggests that the "kill the winner" model could explain the viral impact on prokaryotes in the surface layer, but other dynamics may be at play in the deep layer. Furthermore, we found that annual vertical mixing could result in a similar rate of community change between the surface and deep layers. These findings may be valuable in understanding how communities and the interaction among them change when freshwater lake stratification is affected by global warming in the future.IMPORTANCEViral infection associated with prokaryotic production occurs in a density- or frequency-dependent manner and regulates the prokaryotic community. Stratification transition and annual vertical mixing in freshwater lakes are known to affect the prokaryotic community and the interaction between prokaryotes and viruses. By pairing measurements of virome analysis and prokaryotic production of a 1-year survey of the depths of surface and deep layers, we revealed (i) the prokaryotic infection pairs associated with prokaryotic production and (ii) the reset in prokaryotic and viral communities through annual vertical mixing in a freshwater lake. Our results provide a basis for future work into changes in stratification that may impact the biogeochemical cycling in freshwater lakes.