Revealing the Role of Donor/Acceptor Interfaces in Nonfullerene-Acceptor Based Organic Solar Cells: Charge Separation versus Recombination.
Yiwen JiXinyu MuHang YinBin CuiXiao-Tao HaoKun GaoPublished in: The journal of physical chemistry letters (2023)
Organic solar cells (OSCs) based on nonfullerene-acceptors (NFAs) have achieved rapid development, while the role of donor/acceptor (D/A) interfaces in NFA based heterosystems has not been fully addressed. Here, we clarify that the photoinduced spontaneous charge separation efficiency in typical NFA heterosystems can reach up to 67%, and the charge separation efficiency contributed by the D/A interface is only 25%. The more important role of D/A interfaces is reducing the charge recombination rate, especially optimizing the competition between radiative and nonradiative charge recombination, thus reducing the nonradiative voltage loss. Systematical simulations demonstrate that there exists an optimal interfacial distance for a fixed energy offset, at which the D/A interface can reduce the nonradiative voltage loss by a maximum value of 0.12 V. Hence, we propose that optimizing the interfacial distance combined with the actual interfacial energy offset of a given heterosystem is important to develop its best photovoltaic performance.