Genomic architecture underlying morphological and physiological adaptation to high elevation in a songbird.
Chia-Wei LuShih-Ting HuangShun-Jen ChengChen-Tau LinYu-Cheng HsuCheng-Te YaoFeng DongChih-Ming HungHao-Chih KuoPublished in: Molecular ecology (2023)
Organisms often acquire physiological and morphological modifications to conquer ecological challenges when colonizing new environments which lead to their adaptive evolution. However, deciphering the genomic mechanism of ecological adaptation is difficult because ecological environments are often too complex for straightforward interpretation. Thus, we examined the adaptation of a widespread songbird-the rufous-capped babbler (Cyanoderma ruficeps)-to a relatively simple system: distinct environments across elevational gradients on the mountainous Taiwan island. We focused on the genomic sequences of 43 birds from five populations to show that the Taiwan group split from its sister group in mainland China around 1-2 Ma and colonized the montane habitats of Taiwan at least twice around 0.03-0.22 Ma. The montane and lowland Taiwan populations diverged with gene flow between them, suggesting strong selection associated with different elevations. We showed that the montane babblers had smaller beaks than the lowland ones, consistent with Allen's rule, and identified candidate genes-COL9A1 and SOX11-underlying the beak size changes. We also found that altitudinally divergent mutations were mostly located in non-coding regions and tended to accumulate in chromosomal inversions and autosomes. The altitudinally divergent mutations might regulate genes related to hematopoietic, metabolic, immune, auditory and vision functions as well as cerebrum morphology and plumage development. The results decode the genomic bases of morphological and physiological adaptation in this species to the low temperature, hypoxia and high UV light environment in high elevation. These findings improve our understanding of how ecological adaptation drives population divergence from the perspective of genomic architecture.