Login / Signup

Dual-Carbon Batteries: Materials and Mechanism.

Suhua ChenQuan KuangHong Jin Fan
Published in: Small (Weinheim an der Bergstrasse, Germany) (2020)
Various carbon nanomaterials are being widely studied for applications in supercapacitors and Li-ion batteries as well as hybrid energy storage devices. Dual-carbon batteries (DCBs), in which both electrodes are composed of functionalized carbon materials, are capable of delivering high energy/power and stable cycles when they are rationally designed. This Review focuses on the electrochemical reaction mechanisms and energy storage properties of various carbon electrode materials in DCBs, including graphite, graphene, hard and soft carbon, activated carbon, and their derivatives. The interfacial chemistry between carbon electrodes and electrolyte is also discussed. The perspective for further development of DCBs is presented at the end.
Keyphrases
  • solid state
  • ion batteries
  • ionic liquid
  • carbon nanotubes
  • gold nanoparticles
  • reduced graphene oxide
  • molecular dynamics simulations
  • liquid chromatography