Login / Signup

Observation of Chiral-selective room-temperature phosphorescence enhancement via chirality-dependent energy transfer.

Biao ChenWenhuan HuangGuoqing Zhang
Published in: Nature communications (2023)
Pure organic room-temperature phosphorescence (RTP), particularly from guest-host doped systems, has seen exponential growth in the last several years due to their high modulation flexibility, and yet challenges remain with respect to mechanistic elucidations and advantageous applications. Here we show that by constructing guest-host doped RTP systems from chiral components, namely, chiral amino compound-modified phthalimide hosts and naphthalimide guests, a chiral-selective RTP enhancement phenomenon can be observed. For example, R-enantiomeric guests in R-enantiomeric hosts produce strong red RTP afterglow while no appreciable RTP could be observed in the S-R guest-host counterpart. An unprecedented RTP intensity difference > 10 2 folds with the ability to distinguish an enantiomeric excess of 98% could be achieved. Temperature-dependent measurements suggest that a chirality-dependent energy transfer process may be involved in the observed phenomenon, which can be harnessed to extend the RTP application to the chiral recognition of amino compounds, such as amino alcohols.
Keyphrases
  • room temperature
  • ionic liquid
  • capillary electrophoresis
  • energy transfer
  • quantum dots
  • mass spectrometry
  • water soluble
  • high intensity