Login / Signup

Unveiling the Mechanism of Spontaneous Nanoscroll Formation from Janus Transition Metal Dichalcogenide Nanoribbons.

Ruhao YangHan YeNaizhang SunZhenping WuYumin LiuWenjun Liu
Published in: ACS applied materials & interfaces (2024)
Due to the atomic asymmetry, Janus transition metal dichalcogenide monolayers possess spontaneous curling and can even form one-dimensional nanoscrolls. Unveiling this spontaneous formation mechanism of nanoscrolls is of great importance for precise structural control. In this paper, we successfully simulate the process of Janus MoSSe nanoscroll formation from flat nanoribbons, based on molecular dynamics (MD) simulations with hybrid potentials. The spontaneous scrolling is purely driven by the relaxation of intrinsic strain in Janus MoSSe. The final structure of nanoscroll is strongly affected by the length of nanoribbon with a nonmonotonous relation. To further understand the mechanism, we establish a thermodynamic model to determine the inner radius of MoSSe nanoscrolls, which is shown to be related to spontaneous curvature, bending stiffness, interlayer van der Waals interaction, interlayer distance, and length of initial nanoribbon. The results correspond well with MD simulations of nanoscrolls from flat nanoribbons and the molecular static simulations of directly built nanoscrolls. Moreover, the inner radii of MoSeTe and MoSTe nanoscrolls are predicted based on the model. Our results provide insights into the Janus TMD nanoscroll formation and a pathway for controllable fabrication of nanoscrolls.
Keyphrases
  • molecular dynamics
  • transition metal
  • density functional theory
  • drug induced