Login / Signup

Hepatotoxicity of Cadmium Telluride Quantum Dots Induced by Mitochondrial Dysfunction.

Kathy C NguyenYan ZhangJulie ToddKevin KittleMichelle LalandeScott SmithDouglas ParksMartha NavarroAzam F TayabaliWilliam G Willmore
Published in: Chemical research in toxicology (2020)
The aim of this study was to investigate the detailed mechanisms of hepatotoxicity induced by cadmium telluride quantum dots (CdTe-QDs) in BALB/c mice after intravenous injection. The study investigated oxidative stress, apoptosis, and effects on mitochondria as potential mechanistic events to elucidate the observed hepatotoxicity. Oxidative stress in the liver, induced by CdTe-QD exposure, was demonstrated by depletion of total glutathione, an increase in superoxide dismutase activity, and changes in the gene expression of several oxidative stress-related biomarkers. Furthermore, CdTe-QD treatment led to apoptosis in the liver via both intrinsic and extrinsic apoptotic pathways. Effects on mitochondria were evidenced by the enlargement and increase in the number of mitochondria in hepatocytes of treated mice. CdTe-QDs also caused changes in the levels and gene expression of electron transport chain enzymes, depletion of ATP, and an increase in the level of the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), a regulator of mitochondrial biogenesis. The findings from this study suggest that CdTe-QDs-induced hepatotoxicity might have originated from mitochondrial effects which resulted in oxidative stress and apoptosis in the liver cells. This study provides insight into the biological effects of CdT-QDs at the tissue level and the detailed mechanisms of their toxicity in animals. The study also provides important data for bridging the gap between in vitro and in vivo testing and risk assessment of these NPs.
Keyphrases