Login / Signup

Thermodynamics, Kinetics, and Optical Properties of Rotaxane: A First-Principles Molecular Dynamics Study.

Gourhari JanaJose L Mendoza-Cortes
Published in: The journal of physical chemistry. A (2023)
Through molecular mechanics using the force field along with the quantum dynamical aspect of mechanically interlocked compounds, rotaxanes (defined as macromolecular rings that are threaded on a dumbbell-shaped axle molecule) are investigated with advanced quantum mechanical methods, including the atom-centered density matrix propagation simulation technique, at different temperatures like 300, 500, 700, 900, 2000, and 2500 K for 1.2 ps. Ab initio molecular dynamics simulation is carried out. In addition to, we investigate the noncovalent interaction present in the rotaxane compound 2R-D-2PF 6 with the help of reduced density gradient, average reduced density gradient, density overlap region indicator, and interaction region indicator as well as Hirshfeld surface analyses. Furthermore, the stability of 2R-D-2PF 6 at room temperature and higher temperatures is elucidated by analyzing the thermal fluctuation index through a dynamic process. In order to check the optical behavior of our selected rotaxane compound, an evaluation of the electronic dipole moment, static and frequency-dependent average polarizability, and first- and second-order hyperpolarizability is carried out. The rotaxane compound shows very promising linear and nonlinear optical responses, which indicates its utility as a very good optical material. The calculation of the time-dependent density-functional theory highlights the broad absorption band of rotaxane spanning the UV-visible domain. Therefore, we also unravel that this can tap into solar radiation or harnessing of solar energy.
Keyphrases