Enhancing bone repair through improved angiogenesis and osteogenesis using mesoporous silica nanoparticle-loaded Konjac glucomannan-based interpenetrating network scaffolds.
Hemalatha KanniyappanManoj Kumar SundaramAkhil RavikumarSudip ChakrabortyA GnanamaniU ManiNaresh KumarVignesh MuthuvijayanPublished in: International journal of biological macromolecules (2024)
We have fabricated and characterized novel bioactive nanocomposite interpenetrating polymer network (IPN) scaffolds to treat bone defects by loading mesoporous silica nanoparticles (MSNs) into blends of Konjac glucomannan, polyvinyl alcohol, and polycaprolactone. By loading MSNs, we developed a porous nanocomposite scaffold with mechanical strengths comparable to cancellous bone. In vitro cell culture studies proved the cytocompatibility of the nanocomposite scaffolds. RT-PCR studies confirmed that these scaffolds significantly upregulated major osteogenic markers. The in vivo chick chorioallantoic membrane (CAM) assay confirmed the proangiogenic activity of the nanocomposite IPN scaffolds. In vivo studies were performed using Wistar rats to evaluate the scaffolds' compatibility, osteogenic activity, and proangiogenic properties. Liver and renal function tests confirmed that these scaffolds were nontoxic. X-ray and μ-CT results show that the bone defects treated with the nanocomposite scaffolds healed at a much faster rate compared to the untreated control and those treated with IPN scaffolds. H&E and Masson's trichrome staining showed angiogenesis near the newly formed bone and the presence of early-stage connective tissues, fibroblasts, and osteoblasts in the defect region at 8 weeks after surgery. Hence, these advantageous physicochemical and biological properties confirm that the nanocomposite IPN scaffolds are ideal for treating bone defects.
Keyphrases
- tissue engineering
- bone mineral density
- early stage
- reduced graphene oxide
- bone regeneration
- quantum dots
- soft tissue
- mesenchymal stem cells
- carbon nanotubes
- endothelial cells
- highly efficient
- postmenopausal women
- drug delivery
- magnetic resonance
- high resolution
- high throughput
- vascular endothelial growth factor
- computed tomography
- case control
- lymph node
- body composition
- wound healing
- preterm birth
- gestational age