NIR Light-, Temperature-, pH-, and Redox-Responsive Polymer-Modified Reduced Graphene Oxide/Mesoporous Silica Sandwich-Like Nanocomposites for Controlled Release.
Panjun WangShuo ChenZiquan CaoGuojie WangPublished in: ACS applied materials & interfaces (2017)
Here a novel quadruple-responsive nanocarrier based on reduced graphene oxide/mesoporous silica sandwich-like nanocomposites (rGO@MS) modified by pH- and temperature-responsive poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) with a linker of disulfide was constructed via surface-initiated atom transfer radical polymerization. The polymer chains would be used as gatekeepers to control the release of the loaded cargo molecules under pH, temperature, NIR light and redox stimuli. The cargo molecules (rhodamine B) were demonstrated to release from the polymer-modified nanocomposites triggered by the quadruple-stimuli. It is noted that the release of the loaded rhodamine B from the nanocarriers could be enhanced greatly under the synergistic effect of multiple stimuli. The prepared quadruple-responsive polymer-modified nanocomposites show a bright prospect in the field of smart nanocarriers for controlled release.
Keyphrases