Induced Huge Optical Activity in Nanoplatelet Superlattice.
Xiaoqing GaoXuekang YangJiawei LvLuyang ZhaoXinyu SuiXueyan ZhangYuyu XieZhiyong TangPublished in: Journal of the American Chemical Society (2024)
Chiral superstructures with unique chiroptical properties that are not inherent in the individual units are essential in applications such as 3D displays, spintronic devices, biomedical sensors, and beyond. Generally, chiral superstructures are obtained by tedious procedures exploring various physical and chemical forces to break spatial symmetry during the self-assembly of discrete nanoparticles. In contrast, we herein present a simple and efficient approach to chiral superstructures by intercalating small chiral molecules into preformed achiral superstructures. As a model system, the chiral CdSe nanoplatelet (NPL) superlattice exhibits a giant and tunable optical activity with the highest g -factor reaching 3.09 × 10 -2 to the excitonic transition of the NPL superlattice, nearly 2 orders of magnitude higher than that of the corresponding separated chiral NPLs. The theoretical analysis reveals that the chiral deformation in the NPL superlattice induced by the chiral perturbation of the small chiral molecules is critical to the observed huge optical activity. We anticipate that this research lays a foundation for understanding and applying chiral inorganic nanosystems.