Login / Signup

Ligand Modulation of Active Sites to Promote Electrocatalytic Oxygen Evolution.

Wenzhong HuangJiantao LiXiaobin LiaoRuihu LuChaohong LingXiong LiuJiashen MengLongbing QuMengting LinXufeng HongXunbiao ZhouShanlin LiuYan ZhaoLiang ZhouLiqiang Mai
Published in: Advanced materials (Deerfield Beach, Fla.) (2022)
Rationally designed catalysts hold the key to address the sluggish kinetics of oxygen evolution reaction (OER). However, engineering the active sites of such catalysts still faces grand challenges. This study proposes a feasible ligand modulation strategy to boost the OER catalytic activity of cobalt-iron oxyhydroxide ((Fe,Co)OOH). The 2-methylimidazole (MI) ligand coordination on (Fe,Co)OOH reduces the orbital overlap between the Fe/Co 3d and O 2p, which weakens the adsorption to oxygen-containing intermediates and thus facilitates the unfavorable O 2 desorption. As a result, the MI ligand modulated (Fe,Co)OOH achieves an excellent OER performance with low overpotentials (230/290 mV at 10/100 mA cm -2 ) and excellent durability (>155 h). This study provides a novel ligand modulation strategy for the design of OER catalysts.
Keyphrases
  • metal organic framework
  • aqueous solution
  • highly efficient
  • reduced graphene oxide
  • gold nanoparticles
  • transition metal