Login / Signup

Light-Guided Surface Plasmonic Bubble Movement via Contact Line De-Pinning by In-Situ Deposited Plasmonic Nanoparticle Heating.

Qiushi ZhangYunsong PangJarrod SchiffbauerAleksandar JemcovHsueh-Chia ChangEungkyu LeeTengfei Luo
Published in: ACS applied materials & interfaces (2019)
Precise spatiotemporal control of surface bubble movement can benefit a wide range of applications like high-throughput drug screening, combinatorial material development, microfluidic logic, colloidal and molecular assembly, and so forth. In this work, we demonstrate that surface bubbles on a solid surface are directed by a laser to move at high speeds (>1.8 mm/s), and we elucidate the mechanism to be the depinning of the three-phase contact line (TPCL) by rapid plasmonic heating of nanoparticles (NPs) deposited in situ during bubble movement. On the basis of our observations, we deduce a stick-slip mechanism based on asymmetric fore-aft plasmonic heating: local evaporation at the front TPCL due to plasmonic heating depins and extends the front TPCL, followed by the advancement of the trailing TPCL to resume a spherical bubble shape to minimize surface energy. The continuous TPCL drying during bubble movement also enables well-defined contact line deposition of NP clusters along the moving path. Our finding is beneficial to various microfluidics and pattern writing applications.
Keyphrases
  • single molecule
  • high throughput
  • label free
  • energy transfer
  • single cell
  • emergency department
  • drug induced
  • sensitive detection
  • electronic health record