Transitions of Liver and Biliary Enzymes during Proton Beam Therapy for Hepatocellular Carcinoma.
Taisuke SumiyaMasashi MizumotoYoshiko OshiroKeiichiro BabaMotohiro MurakamiShosei ShimizuMasatoshi NakamuraYuichi HiroshimaToshiki IshidaTakashi IizumiTakashi SaitoHaruko NumajiriKei NakaiToshiyuki OkumuraHideyuki SakuraiPublished in: Cancers (2020)
Proton beam therapy (PBT) is a curative treatment for hepatocellular carcinoma (HCC), because it can preserve liver function due to dose targeting via the Bragg peak. However, the degree of direct liver damage by PBT is unclear. In this study, we retrospectively analyzed liver/biliary enzymes and total bilirubin (T-Bil) as markers of direct liver damage during and early after PBT in 300 patients. The levels of these enzymes and bilirubin were almost stable throughout the treatment period. In patients with normal pretreatment levels, aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma-glutamyl transpeptidase (GGT), and T-Bil were abnormally elevated in only 2 (1.2%), 1 (0.4%), 0, 2 (1.2%), and 8 (3.5%) patients, respectively, and in 8 of these 13 patients (61.5%) the elevations were temporary. In patients with abnormal pretreatment levels, the levels tended to decrease during PBT. GGT and T-Bil were elevated by 1.62 and 1.57 times in patients who received 66 Gy (RBE) in 10 fractions and 74 Gy (RBE) in 37 fractions, respectively, but again these changes were temporary. These results suggest that direct damage to normal liver caused by PBT is minimal, even if a patient has abnormal pretreatment enzyme levels.