Antibacterial and Antibiofouling Activities of Carbon Polymerized Dots/Polyurethane and C 60 /Polyurethane Composite Films.
Zoran M MarkovićMilica D Budimir FilimonovićDušan D MilivojevićJanez KovačBiljana M Todorović MarkovićPublished in: Journal of functional biomaterials (2024)
The cost of treatment of antibiotic-resistant pathogens is on the level of tens of billions of dollars at the moment. It is of special interest to reduce or solve this problem using antimicrobial coatings, especially in hospitals or other healthcare facilities. The bacteria can transfer from medical staff or contaminated surfaces to patients. In this paper, we focused our attention on the antibacterial and antibiofouling activities of two types of photodynamic polyurethane composite films doped with carbon polymerized dots (CPDs) and fullerene C 60 . Detailed atomic force, electrostatic force and viscoelastic microscopy revealed topology, nanoelectrical and nanomechanical properties of used fillers and composites. A relationship between the electronic structure of the nanocarbon fillers and the antibacterial and antibiofouling activities of the composites was established. Thorough spectroscopic analysis of reactive oxygen species (ROS) generation was conducted for both composite films, and it was found that both of them were potent antibacterial agents against nosocomial bacteria ( Klebsiela pneumoniae , Proteus mirabilis , Salmonela enterica , Enterococcus faecalis , Enterococcus epidermis and Pseudomonas aeruginosa ). Antibiofouling testing of composite films indicated that the CPDs/PU composite films eradicated almost completely the biofilms of Pseudomonas aeruginosa and Staphylococcus aureus and about 50% of Escherichia coli biofilms.
Keyphrases
- pseudomonas aeruginosa
- biofilm formation
- healthcare
- staphylococcus aureus
- room temperature
- reactive oxygen species
- escherichia coli
- silver nanoparticles
- single molecule
- candida albicans
- end stage renal disease
- cystic fibrosis
- acinetobacter baumannii
- anti inflammatory
- atomic force microscopy
- chronic kidney disease
- carbon nanotubes
- ejection fraction
- cell death
- newly diagnosed
- dna damage
- tissue engineering
- molecularly imprinted
- risk assessment
- molecular docking
- reduced graphene oxide
- heavy metals
- high speed
- optical coherence tomography
- label free
- patient reported
- visible light
- gram negative
- health insurance