Login / Signup

Brief, But Not Prolonged, Pauses in the Firing of Midbrain Dopamine Neurons Are Sufficient to Produce a Conditioned Inhibitor.

Chun Yun ChangMatthew P H GardnerJessica C ConroyLeslie R WhitakerGeoffrey Schoenbaum
Published in: The Journal of neuroscience : the official journal of the Society for Neuroscience (2018)
Prediction errors are critical for associative learning. In the brain, these errors are thought to be signaled, in part, by midbrain dopamine neurons. However, although there is substantial direct evidence that brief increases in the firing of these neurons can mimic positive prediction errors, there is less evidence that brief pauses mimic negative errors. Whereas pauses in the firing of midbrain dopamine neurons can substitute for missing negative prediction errors to drive extinction, it has been suggested that this effect might be attributable to changes in salience rather than the operation of this signal as a negative prediction error. Here we address this concern by showing that the same pattern of inhibition will create a cue able to meet the classic definition of a conditioned inhibitor by showing suppression of responding in a summation test and slower learning in a retardation test. Importantly, these classic criteria were designed to rule out explanations founded on attention or salience; thus the results cannot be explained in this manner. We also show that this pattern of behavior is not produced by a single, prolonged, ramped period of inhibition, suggesting that it is precisely timed, sudden change and not duration that conveys the teaching signal.SIGNIFICANCE STATEMENT Here we show that brief pauses in the firing of midbrain dopamine neurons are sufficient to produce a cue that meets the classic criteria defining a conditioned inhibitor, or a cue that predicts the omission of a reward. These criteria were developed to distinguish actual learning from salience or attentional effects; thus these results formally show that brief pauses in the firing of dopamine neurons can serve as key teaching signals in the brain. Interestingly, this was not true for gradual prolonged pauses, suggesting it is the dynamic change in firing that serves as the teaching signal.
Keyphrases