Login / Signup

Microfabrication of X-ray Optics by Metal Assisted Chemical Etching: A Review.

Lucia RomanoMarco Stampanoni
Published in: Micromachines (2020)
High-aspect-ratio silicon micro- and nanostructures are technologically relevant in several applications, such as microelectronics, microelectromechanical systems, sensors, thermoelectric materials, battery anodes, solar cells, photonic devices, and X-ray optics. Microfabrication is usually achieved by dry-etch with reactive ions and KOH based wet-etch, metal assisted chemical etching (MacEtch) is emerging as a new etching technique that allows huge aspect ratio for feature size in the nanoscale. To date, a specialized review of MacEtch that considers both the fundamentals and X-ray optics applications is missing in the literature. This review aims to provide a comprehensive summary including: (i) fundamental mechanism; (ii) basics and roles to perform uniform etching in direction perpendicular to the <100> Si substrate; (iii) several examples of X-ray optics fabricated by MacEtch such as line gratings, circular gratings array, Fresnel zone plates, and other X-ray lenses; (iv) materials and methods for a full fabrication of absorbing gratings and the application in X-ray grating based interferometry; and (v) future perspectives of X-ray optics fabrication. The review provides researchers and engineers with an extensive and updated understanding of the principles and applications of MacEtch as a new technology for X-ray optics fabrication.
Keyphrases
  • high resolution
  • dual energy
  • electron microscopy
  • computed tomography
  • low cost
  • solar cells
  • magnetic resonance
  • high speed
  • mass spectrometry
  • amino acid
  • high density