Photodisruption of the Structurally Conserved Cys-Cys-Trp Triads Leads to Reduction-Resistant Scrambled Intrachain Disulfides in an IgG1 Monoclonal Antibody.
Aaron T WeckslerJian YinPaula Lee TaoBruce KabakoffAlavattam SreedharaGalahad DeperaltaPublished in: Molecular pharmaceutics (2018)
Photostability conditions as prescribed by ICH guidelines induced highly reduction-resistant scrambled disulfides that contribute to the population of apparent nonreducible aggregates in an IgG1 mAb. Photoinduced cross-linked species were isolated under reducing conditions using an organic phase size exclusion chromatography (OP-SEC) method, followed by O18-labeling tryptic mapping to identify cross-linked peptides. Disulfide scrambling was observed within the IgG1 structurally conserved-intrachain cysteine-cysteine-tryptophan triads (Cys-Cys-Trp), and correlated with Trp-to-kynurenine (Kyn) photodegradation within these triads. We hypothesize that intrachain disulfides protect the proximal Trp within the Cys-Cys-Trp triads from photodegradation by enabling dissipation of Trp-absorbed UV energy via electron transfer to the disulfide bond. Finally, we propose three distinct mechanisms of photochemical degradation of monoclonal antibodies mediated by Trp residues.