Login / Signup

Multifunctional Self-Healing Carbon Dot-Gelatin Bioadhesive: Improved Tissue Adhesion with Simultaneous Drug Delivery, Optical Tracking, and Photoactivated Sterilization.

Maansi AggarwalHarekrishna PanigrahiDinesh Kumar KotneesProlay Das
Published in: Biomacromolecules (2024)
Bioadhesives with all-inclusive properties for simultaneous strong and robust adhesion, cohesion, tracking, drug delivery, self-sterilization, and nontoxicity are still farfetched. Herein, a carbon dot (CD) is made to infuse each of the above-desired aspects with gelatin, an inexpensive edible protein. The CD derived through controlled hydrothermal pyrolysis of dopamine and terephthaldehyde retained -NH 2 , -OH, -COOH, and, most importantly, -CHO functionality on the CD surface for efficient skin adhesion and cross-linking. Facile fabrication of CD-gelatin bioadhesive through covalent conjugation of -CHO of the CD with -NH 2 of gelatin through Schiff base formation was accomplished. This imparts remarkable self-healing attributes as well as excellent adhesion and cohesion evident from physicomechanical analysis in a porcine skin model. Improved porosity of the bioadhesive allows loading hemin as a model drug whose disembarkment is tracked with intrinsic CD photoluminescence. In a significant achievement, antibiotic-free self-sterilization of bioadhesive is demonstrated through visible light (white LED, 23 W)-irradiated photosensitization of the CD to produce reactive oxygen species for annihilation of both Gram-positive and Gram-negative bacteria with exceptional efficacy (99.9%). Thus, a comprehensive CD-gelatin bioadhesive for superficial and localized wound management is reported as a promising step for the transformation of the bioadhesive domain through controlled nanotization for futuristic clinical translations.
Keyphrases