Login / Signup

Bioconjugated graphene oxide-based Raman probe for selective identification of SKBR3 breast cancer cells.

Afua A Antwi-BoasiakoDerrick DunnSamuel S R DasaryYolanda K JonesSandra L BarnesAnant K Singh
Published in: Journal of Raman spectroscopy : JRS (2017)
In this article, we demonstrate the use of bio-conjugated 2D graphene oxide (bio-GO) nanostructure to probe breast cancer cell (SKBR3) with excellent discrimination over other types of circulating tumor cells. We distinctly observed that bio-GO nanostructure targets and bind SKBR3 cell selectively in the cell mixture. Longer incubation of SKBR3 cell with bio-GO causes Raman signal "turn off" when excited with 532 nm laser. This is attributed to penetration of the bio-GO through the plasma membrane of the cell by generating transient hole. Extraction of GO after cell digestion also support the internalization rubric of 2D graphene through cell membrane. Our experimental data with the HaCaT healthy cell line, as well as with LNCaP prostate cancer cell line clearly demonstrated that this Raman scattering assay is highly selective to SKBR3. The mechanism of selectivity and the assay's response change have been verified and discussed utilizing fluorescence properties of GO and various other techniques. The experimental results open up a possibility of new label free Raman scattering assay, for reliable diagnosis of cancer cell lines by monitoring "turn-off" of the Raman signal from Bio-GO nanostructure.
Keyphrases