Login / Signup

Role of Triplet-State Shelving in Organic Photovoltaics: Single-Chain Aggregates of Poly(3-hexylthiophene) versus Mesoscopic Multichain Aggregates.

Florian SteinerJohn M LuptonJan Vogelsang
Published in: Journal of the American Chemical Society (2017)
Triplet excitons have been the focus of considerable attention with regards to the functioning of polymer solar cells because these species are long-lived and quench subsequently generated singlet excitons in their vicinity. The role of triplets in poly(3-hexylthiophene) (P3HT) has been investigated extensively with contrary conclusions regarding their importance. We probe the various roles triplets can play in P3HT by analyzing the photoluminescence (PL) from isolated single-chain aggregates and multichain mesoscopic aggregates. Solvent vapor annealing allows deterministic growth of P3HT aggregates consisting of ∼20 chains, which exhibit red-shifted and broadened PL compared to single-chain aggregates. The multichain aggregates exhibit a decrease of photon antibunching contrast compared to single-chain aggregates, implying rather weak interchain excitonic coupling and energy transfer. Nevertheless, the influence of triplet-quenching oxygen on PL and a photon correlation analysis of aggregate PL reveal that triplets are quenched by intermolecular interactions in the bulk state.
Keyphrases
  • energy transfer
  • quantum dots
  • solar cells
  • living cells
  • computed tomography
  • magnetic resonance imaging
  • working memory
  • multidrug resistant
  • genome wide
  • fluorescent probe
  • room temperature
  • water soluble