Facile Interface Design Strategy for Improving the Uvioresistant and Self-Healing Properties of Poly(p-phenylene benzobisoxazole) Fibers.
Long YuFei LuXinghao HuangYingying LiuMeiyu LiHaoze PanLeiyu WuYudong HuangZhen HuPublished in: ACS applied materials & interfaces (2019)
Graphene-based coaxial hybrid fibers (CHFs) with a typical core-sheath structure have attracted extensive attention in recent years because of their potentially excellent mechanical performance. However, direct introduction of the micrometer-thick graphene stack structure on the extremely inert fiber surface with little negative effect has barely been reported so far and is still a great challenge. In the present work, a facile and cost-efficient dimensionally confined hydrothermal reduction, static adsorption, and thermal-assisted shrinkage sequential treatment strategy was developed to fabricate one-dimensional CHFs. The large-scale reduced graphene oxide-metal organic framework (RGO-UIO-66) hybrid layer and poly(p-phenylene benzobisoxazole) (PBO) fiber serve as the sheath part and core part, respectively, and the final product is denoted as PGU-CHFs. The experimental results confirmed that the prepared monofilament composite with thermoplastic polyurethane (PGU-CHF-TPU) exhibited an excellent and stable intrinsically self-healing efficiency (about 85%) over 5 cycles and an extraordinary uvioresistant performance (increased by 128%) compared to those of pristine PBO fibers after 288 h UV aging irradiation. Moreover, the anti-ultraviolet (UV) properties of PGU-CHFs at 96 h are basically at the optimum level among most of the reported literatures at present after comparison. The highly near-infrared photothermal conversion ability and stability of micrometer-thick RGO stack structure and the synergism of RGO-UIO-66 hybrid sheath layer including UV adsorption, shielding attenuation, and reflection are responsible for the satisfactorily interfacial self-healing efficiency and UV-resistance properties of PGU-CHFs, respectively. Considering the diversities and versatilities of RGO and MOFs, the proposed fabrication strategy will promisingly endow PBO fibers with great application potential in the other fields such as fiber-based sensors and smart fibers.