Login / Signup

Boron Dopants in Red-Emitting B and N Co-Doped Carbon Quantum Dots Enable Targeted Imaging of Lysosomes.

Yuxian DengYanyang LongAling SongHaiyan WangShuo XiangYe QiuXingyi GeDmitri V GolbergQunhong Weng
Published in: ACS applied materials & interfaces (2023)
Lysosomes are of great significance to cell growth, metabolism, and survival, as they independently maintain acidity and regulate various balances in cells. Therefore, it is essential to develop advanced probes for lysosome visualization and live tracking. Herein, a type of lysosome-targeting probe based on boron (B) and nitrogen (N) co-doped carbon quantum dots (B/N-CQDs) is presented, which exhibits red emission at 618 nm, high quantum yield (28%), and excellent fluorescence stability (97% at 1 h). These B/N-CQDs are prepared by a novel and green solid-state reaction and purified using a simple extraction process without additional chemical modifications. It is found that the boron dopants in the structure play a crucial role in the resultant lysosome-specific targeting property through borate esterification between boronic acid groups in the sample and diol structures in glycoproteins. This can be applied as a powerful tool for cell apoptosis, necrosis, and endosomal escape tracking. This work not only offers a new concept for targeted subcellular probe designs via chemical doping but also demonstrates the feasibility of these tools for analyzing complex cellular physiological activities.
Keyphrases