Login / Signup

Improving the use of LLMs in radiology through prompt engineering: from precision prompts to zero-shot learning.

Maximilian Frederik RusseMarco ReisertFabian BambergAlexander Rau
Published in: RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin (2024)
  · Large language models might impact radiological practice and decision-masking.. · However, implementation and performance are dependent on the assigned task.. · Optimization of prompting strategies can substantially improve model performance.. · Strategies for prompt engineering range from precision prompts to zero-shot learning..
Keyphrases
  • primary care
  • healthcare
  • quality improvement
  • artificial intelligence
  • autism spectrum disorder
  • decision making
  • machine learning
  • deep learning