Login / Signup

Identification of gravity-responsive serum proteins in spaceflight mice using a quantitative proteomic approach with data-independent acquisition mass spectrometry.

Hirokazu KimuraYusuke NakaiYoko InoTomoko AkiyamaKayano MoriyamaTakashi OhiraTomoyuki SaitoYutaka InabaKen KumagaiAkihide RyoHisashi Hirano
Published in: Proteomics (2024)
Physical inactivity associated with gravity unloading, such as microgravity during spaceflight and hindlimb unloading (HU), can cause various physiological changes. In this study, we attempted to identify serum proteins whose levels fluctuated in response to gravity unloading. First, we quantitatively assessed changes in the serum proteome profiles of spaceflight mice using mass spectrometry with data-independent acquisition. The serum levels of several proteins involved in the responses to estrogen and glucocorticoid, blood vessel maturation, osteoblast differentiation, and ossification were changed by microgravity exposure. Furthermore, a collective evaluation of serum proteomic data from spaceflight and HU mice identified 30 serum proteins, including Mmp2, Igfbp2, Tnc, Cdh5, and Pmel, whose levels varied to a similar extent in both gravity unloading models. These changes in serum levels could be involved in the physiological changes induced by gravity unloading. A collective evaluation of serum, femur, and soleus muscle proteome data of spaceflight mice also showed 24 serum proteins, including Igfbp5, Igfbp3, and Postn, whose levels could be associated with biological changes induced by microgravity. This study examined serum proteome profiles in response to gravity unloading, and may help deepen our understanding of microgravity adaptation mechanisms during prolonged spaceflight missions.
Keyphrases