Login / Signup

Blocking the Interaction between EphB2 and ADDLs by a Small Peptide Rescues Impaired Synaptic Plasticity and Memory Deficits in a Mouse Model of Alzheimer's Disease.

Xiao-Dong ShiKai SunRui HuXiao-Ya LiuQiu-Mei HuXiao-Yu SunBin YaoNan SunJing-Ru HaoPan WeiYuan HanCan Gao
Published in: The Journal of neuroscience : the official journal of the Society for Neuroscience (2017)
Alzheimer's disease (AD) is an age-dependent neurodegenerative disorder and amyloid β-derived diffusible ligands (ADDLs) play a key role in triggering the early cognitive deficits that constitute AD. ADDLs may bind EphB2 and alter NMDA receptor trafficking and synaptic plasticity. Here, we identified the interaction sites of the EphB2 FN domain with ADDLs for the first time to develop a small (10 aa) peptide (Pep63) capable of blocking the EphB2-ADDL interaction. We found that Pep63 not only rescued the ADDL-induced depletion of EphB2 and GluN2B-containing NMDA receptors from the neuronal surface in cultured hippocampal neurons, but also improved impaired memory deficits in APPswe/PS1dE9 (APP/PS1) transgenic mice. Our results suggest that blocking the EphB2-ADDL interaction with Pep63 may be a promising strategy for AD treatment.
Keyphrases