Login / Signup

Modeling DTA by Combining Multiple-Instance Learning with a Private-Public Mechanism.

Lingling ZhaoYuanlong ChenLingling ZhaoJunjie WangNaifeng Wen
Published in: International journal of molecular sciences (2022)
The prediction of the strengths of drug-target interactions, also called drug-target binding affinities (DTA), plays a fundamental role in facilitating drug discovery, where the goal is to find prospective drug candidates. With the increase in the number of drug-protein interactions, machine learning techniques, especially deep learning methods, have become applicable for drug-target interaction discovery because they significantly reduce the required experimental workload. In this paper, we present a spontaneous formulation of the DTA prediction problem as an instance of multi-instance learning. We address the problem in three stages, first organizing given drug and target sequences into instances via a private-public mechanism, then identifying the predicted scores of all instances in the same bag, and finally combining all the predicted scores as the output prediction. A comprehensive evaluation demonstrates that the proposed method outperforms other state-of-the-art methods on three benchmark datasets.
Keyphrases