Login / Signup

Does overwintering change the inoculum effect on methane emissions from stored liquid manure?

Etienne L Le RicheAndrew C VanderZaagJeffrey D WoodClaudia Wagner-RiddleKari DunfieldJohn McCabeRobert Gordon
Published in: Journal of environmental quality (2020)
Greenhouse gas (GHG) emissions, especially methane (CH4 ), from manure storage facilities can be substantial. Methane production requires adapted microbial communities ("inoculum") to be present in the manure. Complete removal of liquid dairy manure (thus removing all inoculum) from storage tanks in the spring has been shown to significantly reduce CH4 emissions over the following warm season. This study examined whether the same mitigation effect would occur after fall removal of liquid dairy manure. Emissions of CH4 , nitrous oxide (N2 O), ammonia (NH3 ), and CO2 were measured from six 11.88-m3 tanks equipped with flow-through chambers. There were three inoculated controls (20% inoculum) and three uninoculated treatments, where inoculum was completely removed in the fall/winter (0% inoculum). Direct N2 O and NH3 (indirect N2 O) were minor contributors to the total GHG budget, contributing <2% on a CO2 equivalent (CO2 e) basis. Removal of inoculum led to a 34% decrease in total emissions on a CO2 e basis and to a 29% decrease in the CH4 conversion factor compared with the inoculated control (0.37 vs. 0.52; p = .01). Overall, removing inoculum in the fall reduced CH4 emissions from manure storage tanks; however, fall inoculum removal was less effective than in a previous study where inoculum was removed in the spring. The timing of inoculum removal may affect the efficiency of this CH4 mitigation strategy. However, this method may be impractical for larger manure storage tanks. Further study is required to overcome challenges of time-sensitive, complete inoculum removal from farm-scale storage tanks.
Keyphrases
  • anaerobic digestion
  • municipal solid waste
  • antibiotic resistance genes
  • sewage sludge
  • room temperature
  • ionic liquid
  • life cycle
  • risk assessment
  • microbial community
  • perovskite solar cells