Login / Signup

Radiochemical, Computational, and Spectroscopic Evaluation of High-Denticity Desferrioxamine Derivatives DFO2 and DFO2p toward an Ideal Zirconium-89 Chelate Platform.

Elaheh Khozeimeh SarbishehKelly L SummersAkam K SalihJulien J H CotelesageAmanda ZimmerlingIngrid J PickeringGraham N GeorgeEric W Price
Published in: Inorganic chemistry (2023)
Desferrioxamine (DFO) has long been considered the gold standard chelator for incorporating [ 89 Zr]Zr 4+ in radiopharmaceuticals for positron emission tomography (PET) imaging. To improve the stability of DFO with zirconium-89 and to expand its coordination sphere to enable binding of large therapeutic radiometals, we have synthesized the highest denticity DFO derivatives to date: dodecadentate DFO2 and DFO2p. In this study, we describe the synthesis and characterization of a novel DFO-based chelator, DFO2p, which is comprised of two DFO strands connected by an p -NO 2 -phenyl linker and therefore contains double the chelating moieties of DFO (potential coordination number up to 12 vs 6). The chelator DFO2p offers an optimized synthesis comprised of only a single reaction step and improves water solubility relative to DFO2, but the shorter linker reduces molecular flexibility. Both DFO2 and DFO2p, each with 6 potential hydroxamate ligands, are able to reach a more energetically favorable 8-coordinate environment for Zr(IV) than DFO. The zirconium(IV) coordination environment of these complexes were evaluated by a combination of density functional theory (DFT) calculations and synchrotron spectroscopy (extended X-ray absorption fine structure), which suggest the inner-coordination sphere of zirconium(IV) to be comprised of the outermost four hydroxamate ligands. These results also confirm a single Zr(IV) in each chelator, and the hydroxide ligands which complete the coordination sphere of Zr(IV)-DFO are absent from Zr(IV)-DFO2 and Zr(IV)-DFO2p. Radiochemical stability studies with zirconium-89 revealed the order of real-world stability to be DFO2 > DFO2p ≫ DFO. The zirconium-89 complexes of these new high-denticity chelators were found to be far more stable than DFO, and the decreased molecular flexibility of DFO2p, relative to DFO2, could explain its decreased stability, relative to DFO2.
Keyphrases
  • pet imaging
  • density functional theory
  • molecular dynamics
  • mass spectrometry
  • magnetic resonance
  • gold nanoparticles
  • climate change
  • single molecule
  • molecular docking
  • reduced graphene oxide
  • silver nanoparticles