Fluorescence-Based Detection of the Desolvation Process of Protein Ions Generated in an Aqueous Electrospray Plume.
Prince TiwariMartin F CzarRenato ZenobiPublished in: Analytical chemistry (2021)
A new experimental setup to study laser-induced fluorescence from analytes at different locations in an electrospray plume has been developed. The high fluorescence collection efficiency (∼2%) of the setup, along with a sensitive charge coupled device (CCD) detector, enabled the study of low ion concentrations (down to ∼fM) in the plume. The use of small electrospray tip inner diameters (<1 μm) facilitated the fast desolvation of gaseous protein ions in an aqueous electrospray plume. Fluorescence spectra were acquired from specific locations along the plume axis in different aqueous electrospray plumes with three different analytes: a rhodamine dye and two proteins (ubiquitin and apomyoglobin) labeled with rhodamine dyes. To confirm the presence of gaseous ions, pure gas-phase fluorescence spectra were acquired in the vacuum of a modified ion trap mass spectrometer. These spectra were used to fit to confirm the presence of gaseous species in the corresponding spectra obtained from the electrospray plume. This study shows that with small inner diameter spray capillaries, gaseous protein ions generated at atmospheric pressure in an electrospray plume can be detected with fluorescence-based techniques. Fluorescence measurements can be used to study their structure in the electrospray plume, and the dynamics as they transition from solution to the gas phase and in the early stages after desolvation from charged droplets. Other techniques can also be applied to further study gaseous biomolecular structures under ambient conditions immediately after desolvation.