Influence of Pickling Process on Allium cepa and Citrus limon Metabolome as Determined via Mass Spectrometry-Based Metabolomics.
Mohamed A FaragAhmed F TawfikeMarwa S DoniaAnja EhrlichLudger A A WessjohannPublished in: Molecules (Basel, Switzerland) (2019)
Brine, the historically known food additive salt solution, has been widely used as a pickling media to preserve flavor or enhance food aroma, appearance, or other qualities. The influence of pickling, using brine, on the aroma compounds and the primary and secondary metabolite profile in onion bulb Allium cepa red cv. and lemon fruit Citrus limon was evaluated using multiplex metabolomics technologies. In lemon, pickling negatively affected its key odor compound "citral", whereas monoterpene hydrocarbons limonene and γ-terpinene increased in the pickled product. Meanwhile, in onion sulphur rearrangement products appeared upon storage, i.e., 3,5-diethyl-1,2,4-trithiolane. Profiling of the polar secondary metabolites in lemon fruit via ultra-performance liquid chromatography coupled to MS annotated 37 metabolites including 18 flavonoids, nine coumarins, five limonoids, and two organic acids. With regard to pickling impact, notable and clear separation among specimens was observed with an orthogonal projections to least squares-discriminant analysis (OPLS-DA) score plot for the lemon fruit model showing an enrichment of limonoids and organic acids and that for fresh onion bulb showing an abundance of flavonols and saponins. In general, the pickling process appeared to negatively impact the abundance of secondary metabolites in both onion and lemon, suggesting a decrease in their food health benefits.
Keyphrases
- mass spectrometry
- liquid chromatography
- ms ms
- essential oil
- high resolution mass spectrometry
- high resolution
- tandem mass spectrometry
- high performance liquid chromatography
- gas chromatography
- capillary electrophoresis
- human health
- simultaneous determination
- mental health
- multiple sclerosis
- antibiotic resistance genes
- microbial community
- water soluble
- solid phase extraction
- wastewater treatment