Production and characterisation of modularly deuterated UBE2D1-Ub conjugate by small angle neutron and X-ray scattering.
Zuzanna PietrasAnthony P DuffVivian MoradKathleen WoodCy M JeffriesMaria SunnerhagenPublished in: European biophysics journal : EBJ (2022)
This structural study exploits the possibility to use modular protein deuteration to facilitate the study of ubiquitin signalling, transfer, and modification. A protein conjugation reaction is used to combine protonated E2 enzyme with deuterated ubiquitin for small angle X-ray and neutron scattering with neutron contrast variation. The combined biomolecules stay as a monodisperse system during data collection in both protonated and deuterated buffers indicating long stability of the E2-Ub conjugate. With multiphase ab initio shape restoration and rigid body modelling, we reconstructed the shape of a E2-Ub-conjugated complex of UBE2D1 linked to ubiquitin via an isopeptide bond. Solution X-ray and neutron scattering data for this E2-Ub conjugate in the absence of E3 jointly indicate an ensemble of open and backbent states, with a preference for the latter in solution. The approach of combining protonated and labelled proteins can be used for solution studies to assess localization and movement of ubiquitin and could be widely applied to modular Ub systems in general.