Login / Signup

Evaluation of NU-WRF rainfall forecasts for IFloodS.

Di WuChrista Peters-LidardWei-Kuo TaoWalter Petersen
Published in: Journal of hydrometeorology (2016)
The Iowa Flood Studies (IFloodS) campaign was conducted in eastern Iowa as a pre-GPM-launch campaign from 1 May to 15 June 2013. During the campaign period, real time forecasts are conducted utilizing NASA-Unified Weather Research and Forecasting (NU-WRF) model to support the everyday weather briefing. In this study, two sets of the NU-WRF rainfall forecasts are evaluated with Stage IV and Multi-Radar Multi-Sensor (MRMS) Quantitative Precipitation Estimation (QPE), with the objective to understand the impact of Land Surface initialization on the predicted precipitation. NU-WRF is also compared with North American Mesoscale Forecast System (NAM) 12 km forecast. In general, NU-WRF did a good job at capturing individual precipitation events. NU-WRF is also able to replicate a better rainfall spatial distribution compare with NAM. Further sensitivity tests show that the high-resolution makes a positive impact on rainfall forecast. The two sets of NU-WRF simulations produce very close rainfall characteristics. The Land surface initialization do not show significant impact on short-term rainfall forecast, and it is largely due to the soil conditions during the field campaign period.
Keyphrases
  • high resolution
  • climate change
  • south africa
  • mass spectrometry
  • molecular dynamics
  • case control
  • liquid chromatography