Responses of bimetallic Ag/ZnO alloy nanoparticles and urea on morphological and physiological attributes of wheat.
Maria EhsanNaveed Iqbal RajaZia-Ur-Rehman MashwaniMuhammad IkramEfat ZohraSyeda Sadaf ZehraFozia AbasiMubashir HussainMuhammad IqbalNilofar MustafaAsad AliPublished in: IET nanobiotechnology (2021)
Wheat (Triticum aestivum L.) is the most important staple food crop globally. According to economic survey 2018-19, agriculture sector of Pakistan grew by 0.85%, with wheat accounting for 8.9% of agriculture and 1.6% of GDP, and its production fell short of the target by 4.9%. Wheat requires beneficial ties to improve its efficiency with the help of modern technology. Nanotechnology modifies conventional agricultural practices as these are stimulating agents for plant growth. Green bimetallic Ag/ZnO alloy nanoparticles (NPs) synthesised from salts reduced by Moringa oleifera and characterised by UV-visible spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy are studied herein. Different concentrations of urea and Ag/ZnO alloy NPs were applied exogenously to wheat plants (Pakistan-13 and Galaxy13). A significant effect of 100 mg/L urea and 75 ppm Ag/ZnO alloy NPs was observed on the morphology of wheat, with a maximum increase of 58% plant length, 85% leaf area, 89% plant fresh weight and 76% plant dried weight. In physiological parameters, relative water content and membrane stability index have shown maximum increases of 39% and 77%, while chlorophyll a, b, and total chlorophyll content (TCC) showed maximum increases of 92%, 71%, and 84% respectively. Evidence of the morpho-physiological responses of urea and green synthesised alloy NPs on wheat varieties are reported on.