Login / Signup

Structure-Property Relationships for Potential Inversion From Electron Acceptors Based on Thiophene-Fused Triptycene Quinones, 1,4-Diketones and Their Malononitrile Adducts.

Stefan WarringtonStephanie MontanaroMark R J ElsegoodGary S NicholIain A Wright
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2024)
The synthesis and properties of a series of 11,11,12,12-tetracyano-9,10-anthraquinodimethane (TCAQ) inspired electron acceptors based on thiophene-fused quinone and triptycene motifs is presented. This has yielded insights into structure-property relationships for establishing and modulating simultaneous two-electron reduction processes in TCAQ analogues. These new compounds were synthesised using a Friedel-Crafts acylation between triptycene and thiophene-3,4-dicarbonyl chloride. Isomeric para-quinones featuring a [c]-fused thiophene on one side and a β,β- or α,β-fused triptycene on the other were isolated alongside a thiophene-3,4-diketone which bears two triptycene fragments. Knoevenagel condensation of these products with malononitrile produced a quinoidal bis(dicyanomethylene), an oxo-dicyanomethylene and an acyclic bis(dicyanomethylene). This series of new electron accepting molecules has been studied using X-ray crystallography and the implications of their 3D structures on NMR and UV/vis absorbance spectroscopy and cyclic voltammetry results have been ascertained with conclusions underpinned by computational methods.
Keyphrases
  • solar cells
  • high resolution
  • electron microscopy
  • solid state
  • ionic liquid
  • signaling pathway
  • molecular docking
  • single molecule
  • computed tomography
  • aqueous solution