Tale of Two Layered Semiconductor Catalysts toward Artificial Photosynthesis.
Sounak RoyPublished in: ACS applied materials & interfaces (2020)
The ever-increasing reliance on nonrenewable fossil fuels due to massive urbanization and industrialization created problems such as depletion of the primary feedstock and raised the atmospheric CO2 levels causing global warming. A smart and promising approach is artificial photosynthesis that photocatalytically valorizes CO2 into high-value chemicals. The inexpensive layered semiconductors like g-C3N4 and rGO or GO have the potential to make the process practically feasible for real applications. The suitable band positions with respect to the reduction potentials coupled with the typical surface properties of these layered semiconductors play a beneficial role in photoreduction of CO2. Additionally, the creation of heterojunction interfaces to achieve the Z-scheme by anchoring g-C3N4 and rGO with another semiconductor with proper band alignment and dispersing plasmonic nano metals to obtain Schottky barriers on the layered surfaces also help retarding the electron-hole recombination and boost up the catalytic efficacy. Extensive exploration happened in recent years toward artificial photosynthesis over these materials, which needs a critical compendium. Surprisingly, in spite of the recent explosion of studies on photocatalytic reduction of CO2 over metal-free semiconductors, there is not a single review on comparing the mechanistic aspects of photoreduction of CO2 over the layered semiconductors g-C3N4 and rGO. This review stands out as a unique documentation, where the mechanism of photocatalytic reduction of CO2 over this set of materials is critically examined in the context of band and surface modifications. An overall conclusion and outlook at the end indicates the need to develop prototypes for artificial photosynthesis with these well-studied semiconducting layered materials to yield solar fuels.