Login / Signup

Insulated Interlaced Surface Electrodes for Bacterial Inactivation and Detachment.

Qiaoying ZhangBin LiuGuandao GaoChad D Vecitis
Published in: The journal of physical chemistry. B (2023)
Effective and stable antibiofouling surfaces and interfaces have long been of research interest. In this study, we designed, fabricated, and evaluated a surface coated with insulated interlaced electrodes for bacterial fouling reduction. The electrodes were printed Ag filaments of 100 μm width and 400 μm spacing over an area of 2 × 2 cm 2 . The insulating Ag electrode coating material was polydimethylsiloxane (PDMS) or thermoplastic polyurethane (TPU) with a thickness of 10 to 40 μm. To evaluate the antibiofouling potential, E. coli inactivation after 2 min contact with the electrified surface and P. fluorescens detachment after 15 and 40 h growth were examined. The extent of bacterial inactivation was related to the insulating material, coating thickness, and applied voltage (magnitude and AC vs DC). A high bacterial inactivation (>98%) was achieved after only 2 min of treatment at 50 V AC and 10 kHz using a 10 μm TPU coating. P. fluorescens detachment after 15 and 40 h incubation in the absence of applied potential was completed with simultaneous cross-flow rinsing and AC application. Higher AC voltages and longer cross-flow rinsing times resulted in greater bacterial detachment with bacterial coverage able to be reduced to <1% after only 2 min of rinsing at 50 V AC and 10 kHz. Theoretical electric field analysis indicated that at 10 V the field strength penetrating the aqueous solution is nonuniform (∼16,000-20,000 V m -1 for the 20 μm TPU) and suggests that dielectrophoresis plays a key role in bacterial detachment. The bacterial inactivation and detachment trends observed in this study indicate that this technique has merit for future antibiofouling surface development.
Keyphrases
  • risk assessment
  • carbon nanotubes
  • escherichia coli
  • quantum dots
  • healthcare
  • high frequency
  • dendritic cells
  • gold nanoparticles
  • reduced graphene oxide