Login / Signup

Acceleration of Biexciton Radiative Recombination at Low Temperature in CdSe Nanoplatelets.

Alexandra BrumbergNicolas E WatkinsBenjamin T DirollRichard D Schaller
Published in: Nano letters (2022)
Colloidal semiconductor nanocrystals offer bandgap tunability, high photoluminescence quantum yield, and colloidal processing of benefit to optoelectronics, however rapid nonradiative Auger recombination (AR) deleteriously affects device efficiencies at elevated excitation intensities. AR is understood to transition from temperature-dependent behavior in bulk semiconductors to temperature-independent behavior in zero-dimensional quantum dots (QDs) as a result of discretized band structure that facilitates satisfaction of linear momentum conservation. For nanoplatelets (NPLs), two-dimensional morphology renders prediction of photophysical behaviors challenging. Here, we investigate and compare the temperature dependence of excited-stated lifetime and fluence-dependent emission of CdSe NPLs and QDs. For NPLs, upon temperature reduction, biexciton lifetime surprisingly decreases (even becoming shorter lived than trion emission) and emission intensity increases nearly linearly with fluence rather than saturating, consistent with dominance of radiative recombination rather than AR. CdSe NPLs thus differ fundamentally from core-only QDs and foster increased utility of photogenerated excitons and multiexcitons at low temperatures.
Keyphrases
  • quantum dots
  • energy transfer
  • sensitive detection
  • dna damage
  • dna repair
  • room temperature
  • molecular dynamics