Strong SHG Responses in a Beryllium-Free Deep-UV-Transparent Hydroxyborate via Covalent Bond Modification.
Chao WuXing-Xing JiangLin LinWenyan DanZhe-Shuai LinZhipeng HuangMark G HumphreyChi ZhangPublished in: Angewandte Chemie (International ed. in English) (2021)
Deep-ultraviolet (deep-UV) nonlinear optical (NLO) crystals are key materials in creating tunable deep-UV lasers for frequency conversion technology. However, practical application of the sole usable crystal, KBe2 BO3 F2 , has been hindered by the high toxicity of beryllium and its layering tendency in crystal growth. Herein, we report a beryllium-free deep-UV NLO material NaSr3 (OH)(B9 O16 )[B(OH)4 ] (NSBOH), synthesized by a covalent bond modification strategy under hydrothermal conditions. Moisture-stable NSBOH exhibits strong second-harmonic generation (SHG) at 1064 nm (3.3 × KH2 PO4 ) and 532 nm (0.55 × β-BaB2 O4 ), both amongst the largest powder SHG responses for a deep-UV borate, with good phase-matchability and a short wavelength cutoff edge (below 190 nm). NSBOH possesses a 3D covalent anionic [B9 O19 ]∞ honeycomb-like framework with no layering. The Sr2+ and Na+ ions, residing in the cavities of the anionic framework, act as templates for the assembly and favorable alignment of NLO-active groups, resulting in an optimal balance between strong SHG activities and wide UV transparency. These merits indicate NSBOH is a very attractive candidate for deep-UV NLO applications.