Login / Signup

Catalytically Initiated Gel-in-Gel Printing of Composite Hydrogels.

Amrita BasuAbhijit SahaCassandra GoodmanRyan T ShafranekAlshakim Nelson
Published in: ACS applied materials & interfaces (2017)
Herein, we describe a method to 3D print robust hydrogels and hydrogel composites via gel-in-gel 3D printing with catalytically activated polymerization to induce cross-linking. A polymerizable shear-thinning hydrogel ink with tetramethylethylenediamine as catalyst was directly extruded into a shear-thinning hydrogel support bath with ammonium persulfate as initiator in a pattern-wise manner. When the two gels came into contact, the free radicals generated by the catalyst initiated the free-radical polymerization of the hydrogel ink. Unlike photocuring, a catalyst-initiated polymerization is suitable for printing hydrogel composites of varying opacity, since it does not depend upon light penetration through the sample. The hydrogel support bath also exhibited a temperature-responsive behavior in which the gel "melted" upon cooling below 16 °C. Therefore, the printed object was easily removed by cooling the gel to a liquid state. Hydrogel composites with graphene oxide and multiwalled carbon nanotubes (MWCNTs) were successfully printed. The printed composites with MWCNTs afforded photothermally active objects, which have utility as stimuli-responsive actuators.
Keyphrases